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Анотація. Робота присвячена проблемі аналітичного визначення інтенсивності реакти-
вних навантажень для статично визначних криволінійних брусів із плоскою віссю довільної 
форми, що перебувають під дією зосереджених та розподілених навантажень. У природній 
системі координат отримані узагальнені інтегральні вирази для визначення компонент рівно-
дійних активних і реактивних навантажень, що діють на поздовжніх циліндричних поверх-
нях та торцях бруса. Дані вирази разом із співвідношеннями для моделювання зосереджених, 
локалізованих та розподілених навантажень дозволяють аналітично визначати інтенсивність 
реактивних зусиль у опорах та закріпленнях статично визначних криволінійних брусів. На-
ведено приклад застосування отриманих співвідношень при аналітичному визначенні реак-
цій опор для шарнірно закріпленого бруса із параболічною віссю. 

Ключові слова: криволінійний брус, природна система координат, активне наванта-
ження, реактивні зусилля, статична рівновага. 

Введення. Криволінійні бруси є поширеними елементами машинобудівних та будівель-
них конструкцій. Тому дослідження деформування криволінійних однорідних та композитних 
брусів було і залишається одним із важливих та актуальних напрямів розвитку механіки дефо-
рмівного твердого тіла. Додатковим свідченням цьому є незмінна увага дослідників до різних 
задач деформування таких елементів, що знайшло відображення у значній кількості робіт 
останнього часу [1-9]. 

Для більшості задач механіки пружного деформування прямих чи криволінійних стер-
жньових елементів конструкцій необхідними вихідними даними є розподіл навантажень на 
його поверхнях. Повне навантаження таких елементів складає зовнішнє активне наванта-
ження та реакції в’язей накладених на переміщення закріплених (опорних) точок. Активна 
складова навантаження зазвичай відома, реактивна – потребує визначення, що є одним із пе-
рших кроків розв’язання будь-якої задачі міцності та жорсткості стержня. 

Незалежно від того статично визначна задача чи статично невизначна, частина реакти-
вних зусиль прямо чи опосередковано має визначатись, через умови рівноваги статики. По 
іншому – реакції, поряд із кінематичними умовами, які накладають наявні закріплення, ма-
ють забезпечувати виконання умов рівноваги бруса, як жорсткого тіла. 

У випадку, коли навантаження бруса представлене зосередженими силами та моментами, 
визначення реакції опор, незалежно від форми його осі, проблеми не складає. Однак, наявність 
навіть зведеного до осі стержня рівномірно розподіленого нормального чи дотичного наванта-
ження сильно ускладнює використання, відомих з теоретичної механіки, умов рівноваги. При 
цьому окремою проблемою є зведення розподілених на поздовжніх поверхнях навантажень до 
осі криволінійного стержня. Навіть у відомих ґрунтовних працях з механіки криволінійних сте-
ржнів [10-13], дані етапи розв’язання задач, зазвичай, залишаються поза увагою дослідників і 
активне та реактивне навантаження, за винятком балок на пружній основі, вважається відомим. 

У ряді попередніх робіт авторами було розроблено узагальнені підходи до аналітичного 
описання будови, моделювання зосереджених [14] та локалізованих [15] на ділянці поверхні на-
вантажень, визначення внутрішніх силових факторів [16] та побудови рівнянь теорії пружності 
[17] для криволінійних брусів із плоскою віссю довільної форми, що ґрунтуються на понятті 
природної системи координат [18, 19]. Побудовані у вказаних роботах, підходи та теоретичні 
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співвідношення, дозволяють розробити аналітичний метод статичного розрахунку криволіній-
них брусів, який з одного боку буде узагальненим по відношенню до форми їхніх осей та прик-
ладеного навантаження, а з іншого буде достатньо деталізованим для практичної реалізації. 

Мета та завдання. Метою даної роботи є побудова узагальненого підходу до визначення 
інтенсивності реактивних навантажень для статично визначних криволінійних балок із плоскою 
віссю довільної форми, що перебувають під дією системи нормальних та дотичних навантажень, 
розподілених на поздовжніх циліндричних поверхнях та торцях. Основним завданням – є вста-
новлення зв’язку між розподіленими на криволінійних поверхнях бруса навантаженнями та їх 
рівнодійними. 

Матеріали та методика дослідження. Задачу розглянемо у постановці, аналогічній 
[16]. Брус із криволінійною плоскою віссю (рис. 1), що є плоскою шматково-гладкою кривою 

C
g  і лежить у площині симетрії бруса XOZ , зберігає рівновагу під дією зовнішніх нормаль-

них ,p p  

   і дотичних ,p p  

   навантажень, розподілених на поздовжніх ( , 1,2   ) та 

торцевих (  ) поверхнях, відповідно. Навантаження розподілені за довільним законом по 

довжині   та висоті  , але в обох випадках – симетрично відносно площини XOZ . 

 
Рис. 1. Будова та зовнішнє навантаження криволінійного бруса 

 

Як основну систему координат для розглядуваного бруса оберемо природну циліндри-

чну систему координат Y , у якій поздовжні поверхні   та торці   належать взаємно 

ортогональним однопараметричним сімействам координатних поверхонь. 

Повні нормальні ,p p  

   та дотичні ,p p  

   навантаження можна вважати сумарними, 

які у загальному випадку складаються із активної та реактивної складових: 

 a rp p p  . 

Разом, повні навантаження усіх поверхонь бруса складають зрівноважену систему сил, 
яка може бути приведена до плоскої. Для такої системи умови рівноваги статики у допоміж-
ній прямокутній системі координат XOZ  можна записати на основі відомих умов теоретич-
ної механіки у такому вигляді: 

 0, 0, 0,a r a r a r

x x z z yK yKQ Q Q Q M M       (1) 

де , ,a a a

x z yKQ Q M  та , ,r r r

x z yKQ Q M  – проекції головного вектора на осі допоміжної системи XOZ  

та сумарний момент відносно довільної точки K  площини XOZ , системи активних ap  і ре-

активних rp  сил, відповідно. 

У випадку, коли геометрія поверхонь бруса задана аналітично, співвідношення для визна-

чення , ,s s s

x z yKQ Q M  ( ,s a r ) можна отримати інтегруючи по відповідних циліндричних поверх-
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нях складові розподілених навантажень , , ,p p p p      

     у допоміжній системі координат 

XYZ . Такий підхід на перший погляд видається найбільш універсальним, однак він є надто за-
гальним для практичної реалізації і потребує індивідуального підходу для кожного конкретного 
випадку форми бруса. Натомість, із використанням інтегральних виразів для внутрішніх сило-
вих факторів, отриманих у [16], можна отримати співвідношення, які безпосередньо пов’язують 

зовнішні навантаження, їх рівнодійні , ,s s s

x z yKQ Q M  і геометрію поверхонь. 

Згідно [16] внутрішні силові фактори криволінійного бруса пов’язані із навантаженням 

на його поздовжніх поверхнях   і торцях   наступними інтегральними виразами: 
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 (2) 

де ,   – криволінійні координати точки у природній системі  . 

Функції 1 1 1, , yN Q M   у (2) є складовими внутрішніх силових факторів від навантажень 

у початковому перерізі бруса і визначаються за інтегральними виразами: 
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У співвідношеннях (2) та (3):    , , ,L L L L          – коефіцієнти Ламе природної 

системи координат  ;  ,     – кут між дотичною до кривої f  (проекція поперечного 

перерізу на XOZ ) та додатним напрямом осі OX ; tg   ;    , , ,x zx z         – функції 

зв’язку між координатами довільної точки  ,K x z  у допоміжній системі XOZ  та координатами 

точки  ,K    у природній системі  ; , , ,q q q q      

     – зведене до площини XOZ , зовніш-

нє навантаження: 
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Аналітичний зв’язок коефіцієнтів ,L L   та величин , , ,x z     із геометрією криволі-

нійного бруса розкритий у роботах [18, 19], де також наведені приклади визначення вказаних 
величин для брусів різної форми. 

Співвідношення (2), по суті, дають значення компонент рівнодійної сили та рівнодій-

ний момент, приведені до точки осі бруса із координатами  , C  , для навантажень, що зна-

ходяться, умовно, зліва від перерізу із координатою  . У точці площини XOZ  для якої 

| 2
C   , лінії дії векторів зусиль ,N Q   (2) стають паралельними координатним осям 

OX  та OZ , відповідно. Тоді, підставивши до перших двох співвідношень (2): 2   , 
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| 2
C   , і додавши відповідні складові рівнодійних від навантажень на торцях  , для 

рівнодійних зовнішнього активного та реактивного навантаження бруса можемо записати: 
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 (5) 

де ,s a r ; ,S S

xi ziQ Q  – проекції рівнодійних від навантаження прикладеного до поверхонь торців 

i  бруса. 

На основі третього співвідношення (2), для рівнодійного моменту активних і реактив-

них навантажень відносно довільної точки  2 , KK    торця 2  отримаємо: 
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 (6) 

де ,s a r ; S

yiKM  – момент від навантаження на торцях i  бруса відносно точки K . 

Рівнодійні навантаження на торцях бруса , ,s s s

xi zi yiKQ Q M , аналогічно (5) та (6), можна 

отримати на основі співвідношень для внутрішніх силових факторів (3): 
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 (7) 

Компоненти розподіленого навантаження у природній криволінійній системі координат 
  пов’язані із компонентами у прямокутній системі XOZ  наступними залежностями: 
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 (8) 

Для випадку зведеного навантаження представленого компонентами у допоміжній 
прямокутній системі координат XOZ  співвідношення (5)-(7) із використанням (8) можна пе-
ретворити до такого вигляду: 
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Для статично визначної задачі застосування співвідношень (5), (6), (7) або (9) у рівнян-
нях (1) дозволяє визначити невідомі інтенсивності реактивного навантаження бруса, викли-
каного накладеними в’язями. У випадку статично невизначної задачі, кількість невідомих 
параметрів реактивного навантаження перевищує кількість рівнянь рівноваги (1) і для 
розв’язання задачі вони мають бути доповнені додатковими рівняннями, що зазвичай можуть 
бути отримані виходячи із відповідності переміщень закріплених точок бруса накладеним на 
них кінематичним умовам. 

Співвідношення (5)-(7) та (9) містять функції розподілених навантажень, що дозволяє 
безпосередньо застосовувати їх у ході визначення параметрів реактивного навантаження 
представленого безперервною функцією криволінійної координати. У випадку ідеалізованих 
закріплень окремих точок, реактивні навантаження є зосередженими у закріплених точках 
силами та моментами, що створює певні труднощі застосування даних співвідношень. Од-
нак, як показано у роботах [14] та [15], такі типи навантажень криволінійних брусів можна 
описати у вигляді еквівалентних розподілених навантажень із застосуванням узагальнених 
функцій. Використання отриманих у даних роботах співвідношень дозволяє враховувати у 
(5)-(7), (9), як безперервні реактивні навантаження, так і зосереджені у точці або локалізовані 
на ділянці без використання додаткових прийомів, що робить універсальним запропонований 
підхід до статичного розрахунку криволінійних брусів. 

Результати дослідження. Як приклад реалізації отриманих співвідношень розглянемо 
визначення реактивних зусиль для шарнірно закріпленого консольного бруса із параболіч-
ною віссю (рис. 1), що перебуває під дією рівномірно розподіленого нормального наванта-

ження на поверхні П2 та зосередженої сили і моменту на торці Т1: 1 1,85F кН , 

1 20,55 , 7,95M кН м q кН м   . Поперечний переріз бруса незмінний по його довжині і має 

висоту h . 
Поставлену задачу розв’яжемо із застосуванням природної системи координат із пара-

метризацією за координатою x  поперечного перерізу бруса (координатою точки параболіч-
ної осі) [19]. 

Параболічна вісь бруса на рис. 2 задана рівнянням: 
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h
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Величини, що характеризують відповідну природну систему координат, отримані згід-
но [19]: 
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Рис. 2. Схема бруса з параболічною віссю (розміри в м ) 
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Активні навантаження розглядуваного бруса складають сила 
1F  і момент 

1M , що прик-

ладені до торця 
1  та рівномірне нормальне навантаження 

2q , що діє на поздовжню поверх-

ню 2 . Еквівалентні розподілені навантаження, що моделюють вказані активні навантажен-

ня бруса, згідно [14] та [15], матимуть наступний вигляд: 
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 (12) 

Реактивні навантаження бруса складають зосереджені реакції шарнірних опор A  та B , 

представлені у вигляді нормальних і дотичних компонент ,A AR R   та BR , що діють на торці 

2  та поверхні 1 , відповідно. Співвідношення, що моделюють дані навантаження, згідно 

[14] та [15] матимуть такий вигляд: 
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 (13) 

Підставивши (12) до (5)-(7) отримаємо наступні співвідношення для рівнодійних акти-

вного навантаженням бруса: 
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 (14) 

Тут у якості точки K , відносно якої визначався рівнодійний момент a

yKM , прийнятий 

центр ваги торця 2  і, відповідно, 0K C    . 

Аналогічно, підстановкою (13) до (5)-(7), отримані рівнодійні реактивного навантаження 

бруса: 
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 (15) 

Для бруса на рис. 2: 1 2 1 2 12 , 1 , 2 , 0,5 , 1,4 , 0,05B Ah м h м м м м м              , 

0,025D м   . Підставивши (14) і (15) до системи (1) і розв’язавши отримані рівняння відно-

сно невідомих інтенсивностей реактивних зусиль із урахуванням прийнятих значень коорди-

нат та інтенсивності навантажень, отримаємо: 

 1083,38 , 7646,14 , 18245,61A A BR Н R Н R Н      . 

Як бачимо, напрям дії нормальної складової AR  реакції шарнірно нерухомої опори A  

був обраний невірно. 
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Для зручності, стержні опори A  були спрямовані по нормалі та вздовж дотичної до по-

здовжнього волокна бруса, однак відомі значення компонент 
AR

 і AR  дозволять шляхом 

нескладних перетворень перейти до будь-якої іншої орієнтації опорних стержнів. 

У наведеному прикладі, з метою перевірки правильності отримуваних значень рівно-

дійних, прийняте достатньо просте навантаження. Однак запропонований метод без внесення 

змін дозволяє враховувати комбінації зосереджених, локалізованих та розподілених наван-

тажень будь-якої складності. 

Висновки. Таким чином, отримані узагальнені співвідношення для аналітичного ви-

значення рівнодійних зовнішнього навантаження та запропоновано методику аналітичного 

визначення інтенсивностей реактивного навантаження для статично визначного криволіній-

ного бруса із плоскою віссю довільної форми. Теоретичні співвідношення отримані у приро-

дній, для геометрії криволінійного бруса, системі координат і є інваріантними по відношен-

ню до форми його осі. Водночас вони є достатньо деталізованими, щоб за відомими геомет-

ричними параметрами бруса (параметрами його природної системи координат) та розподі-

лом навантажень отримати готові інтеграли їх рівнодійних. 

Отримані співвідношення апробовані на прикладі визначення реакцій опор шарнірно 

закріпленого бруса постійного перерізу із віссю у формі параболи, що перебуває під дією зо-

середжених на розподілених навантажень. 

Запропонований аналітичний метод статичного розрахунку криволінійних брусів, окрім 

отримання числових значень реактивних навантажень, дозволяє встановити функціональні за-

лежності між величинами активних і реактивних сил, координатами точок їх прикладання та ге-

ометрією бруса. Разом із інтегральними співвідношеннями для внутрішніх силових факторів це 

відкриває можливості аналізу розрахункової схеми криволінійного бруса з метою її оптимізації. 
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АНАЛИТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ РЕАКТИВНЫХ УСИЛИЙ ДЛЯ 

КРИВОЛИНЕЙНЫХ БРУСЬЕВ С ПЛОСКОЙ ОСЬЮ ПРОИЗВОЛЬНОЙ ФОРМЫ 
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Аннотация. Для большинства задач механики деформирования стержневых элементов 

конструкций необходимыми исходными данными являются распределение полных нагрузок на 

его поверхностях, состоящих из активной нагрузки и реакции закреплений. Активная состав-

ляющая обычно известна, реактивная – требует определения, что является одним из первых ша-

гов решения любой задачи прочности и жесткости бруса. В случае, когда нагрузка бруса пред-

ставлена сосредоточенными силами и моментами, определение реакции опор, как правило, 

проблемы не составляет. Однако, для криволинейного бруса даже равномерно распределенная 

нормальная или касательная нагрузка сильно затрудняет применение известных по теоретиче-

ской механике условий равновесия. Целью данной работы является построение обобщенного 

подхода к определению интенсивности реактивных нагрузок для статически определимого 

криволинейного бруса с плоской осью произвольной формы, который находится под действием 

системы нормальных и касательных нагрузок на продольных цилиндрических поверхностях и 

торцах. На основе соотношений для внутренних силовых факторов, полученных авторами в 

предыдущей работе, были построены обобщенные соотношения для компонент равнодейству-

ющих активной и реактивной нагрузок. Вместе с условиями статического равновесия плоской 

системы сил и соотношениями для моделирования сосредоточенных и локализованных нагру-

зок, построенные зависимости составляют основу аналитического метода определения реак-

тивных усилий статически определимых криволинейных брусьев. Полученные соотношения 
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апробированы на примере определения реакций опор шарнирно закрепленного бруса постоян-

ного сечения с осью в форме параболы, находящегося под действием сосредоточенных и рас-

пределенных нагрузок. Предложенный аналитический метод статического расчета криволиней-

ных брусьев, кроме получения числовых значений реактивных нагрузок, позволяет установить 

функциональные зависимости между величинами активных и реактивных сил, координатами 

точек их приложения и геометрией бруса, что открывает широкие возможности анализа рас-

четной схемы криволинейной бруса с целью ее оптимизации. 

Ключевые слова: криволинейный брус, естественная система координат, активная 

нагрузка, реактивные усилия, статическое равновесие. 

ANALYTICAL DETERMINATION OF REACTIVE FORCES FOR CURVILINEAR BARS 

WITH A FLAT AXIS OF ARBITRARY SHAPE 
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stanislav.kovalchuk@pdaa.edu.ua, ORCID: 0000-0003-4550-431X 

Goryk O., Doctor of Engineering, Professor, 

oleksii.goruk@pdaa.edu.ua, ORCID: 0000-0002-2804-5580 

Poltava state agrarian academy 

Abstract. For most tasks of the mechanics dealing with the deformation of rod structural ele-

ments, the necessary basic data are the distribution of full loads on its surfaces, consisting of an active 

load and the reaction of fixations. The active component is usually known, the reactive one needs to be 

determined, which is one of the first steps of solving any problem of strength and stiffness of the bar. 

In cases when the load of the bar is represented by concentrated forces and moments, the determination 

of the reaction of support blocks, as a rule, is not a problem. However, for a curvilinear bar, even nor-

mal or tangential loads make it difficult to apply the equilibrium conditions known in theoretical me-

chanics. The purpose of this paper is to develop a generalized approach to determining the intensity of 

reactive loads for a statically determinable curvilinear bar with a flat axis of an arbitrary shape, which 

is under the influence of the system of normal and tangential loads on longitudinal cylindrical surfaces 

and ends. On the basis of the relations for the internal force factors obtained by the authors in the pre-

vious work, generalized relations for the components of resultants of active and reactive loads were 

developed. Together with the conditions of static equilibrium of the plane system of forces and the re-

lations for modeling of concentrated and localized loads, the constructed dependences form the basis of 

the analytical method for determining the reactive forces of statically determinable curvilinear bars. 

The obtained relations are tested using the example of determining the reactions of support blocks of a 

hinged bar with a constant cross-section with an axis in the form of a parabola under the action of con-

centrated and distributed loads. The proposed analytical method of static calculation of curvilinear 

bars, in addition to obtaining the numerical values of reactive loads, enables to establish functional re-

lationships between the intensity of active and reactive forces, the coordinates of their application 

points and the geometry of the bar, which opens wide possibilities for the analysis of the design model 

of a curvilinear bar for the purpose of its optimization. 

Keywords: curvilinear bar, natural coordinate system, active load, reactive forces, static equi-

librium. 
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